Short Simplex Paths in Lattice Polytopes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding Short Paths on Polytopes by the Shadow Vertex Algorithm

We show that the shadow vertex algorithm can be used to compute a short path between a given pair of vertices of a polytope P = {x ∈ R : Ax ≤ b} along the edges of P , where A ∈ Rm×n. Both, the length of the path and the running time of the algorithm, are polynomial in m, n, and a parameter 1/δ that is a measure for the flatness of the vertices of P . For integer matrices A ∈ Zm×n we show a con...

متن کامل

Lattice Points in Lattice Polytopes

We show that, for any lattice polytope P ⊂ R, the set int(P ) ∩lZ (provided it is non-empty) contains a point whose coefficient ofasymmetry with respect to P is at most 8d · (8l+7)2d+1. If, moreover,P is a simplex, then this bound can be improved to 8 · (8l+ 7)d+1.As an application, we deduce new upper bounds on the volume ofa lattice polytope, given its ...

متن کامل

Monotone paths on polytopes

We investigate the vertex-connectivity of the graph of f -monotone paths on a d-polytope P with respect to a generic functional f . The third author has conjectured that this graph is always (d − 1)-connected. We resolve this conjecture positively for simple polytopes and show that the graph is 2-connected for any d-polytope with d ≥ 3. However, we disprove the conjecture in general by exhibiti...

متن کامل

Lattice Polytopes in Algebra ,

[1] Victor V. Batyrev and Benjamin Nill. Multiples of lattice polytopes without interior lattice points. Moscow Mathematical Journal 7:195–207, 2007. [2] Victor V. Batyrev, Benjamin Nill. Combinatorial aspects of mirror symmetry. Contemporary Mathematics, 452:35–66, 2008. [3] Barbara Baumeister, Christian Haase, Benjamin Nill and Andreas Paffenholz. On permutation polytopes. Advances in Mathema...

متن کامل

Lattice Points inside Lattice Polytopes

We show that, for any lattice polytope P ⊂ R, the set int(P ) ∩ lZ (provided it is non-empty) contains a point whose coefficient of asymmetry with respect to P is at most 8d · (8l+7) 2d+1 . If, moreover, P is a simplex, then this bound can be improved to 9 · (8l+ 7) d+1 . This implies that the maximum volume of a lattice polytope P ⊂ R d containing exactly k ≥ 1 points of lZ in its interior, is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2021

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-020-00268-y