Short Simplex Paths in Lattice Polytopes
نویسندگان
چکیده
منابع مشابه
Finding Short Paths on Polytopes by the Shadow Vertex Algorithm
We show that the shadow vertex algorithm can be used to compute a short path between a given pair of vertices of a polytope P = {x ∈ R : Ax ≤ b} along the edges of P , where A ∈ Rm×n. Both, the length of the path and the running time of the algorithm, are polynomial in m, n, and a parameter 1/δ that is a measure for the flatness of the vertices of P . For integer matrices A ∈ Zm×n we show a con...
متن کاملLattice Points in Lattice Polytopes
We show that, for any lattice polytope P ⊂ R, the set int(P ) ∩lZ (provided it is non-empty) contains a point whose coefficient ofasymmetry with respect to P is at most 8d · (8l+7)2d+1. If, moreover,P is a simplex, then this bound can be improved to 8 · (8l+ 7)d+1.As an application, we deduce new upper bounds on the volume ofa lattice polytope, given its ...
متن کاملMonotone paths on polytopes
We investigate the vertex-connectivity of the graph of f -monotone paths on a d-polytope P with respect to a generic functional f . The third author has conjectured that this graph is always (d − 1)-connected. We resolve this conjecture positively for simple polytopes and show that the graph is 2-connected for any d-polytope with d ≥ 3. However, we disprove the conjecture in general by exhibiti...
متن کاملLattice Polytopes in Algebra ,
[1] Victor V. Batyrev and Benjamin Nill. Multiples of lattice polytopes without interior lattice points. Moscow Mathematical Journal 7:195–207, 2007. [2] Victor V. Batyrev, Benjamin Nill. Combinatorial aspects of mirror symmetry. Contemporary Mathematics, 452:35–66, 2008. [3] Barbara Baumeister, Christian Haase, Benjamin Nill and Andreas Paffenholz. On permutation polytopes. Advances in Mathema...
متن کاملLattice Points inside Lattice Polytopes
We show that, for any lattice polytope P ⊂ R, the set int(P ) ∩ lZ (provided it is non-empty) contains a point whose coefficient of asymmetry with respect to P is at most 8d · (8l+7) 2d+1 . If, moreover, P is a simplex, then this bound can be improved to 9 · (8l+ 7) d+1 . This implies that the maximum volume of a lattice polytope P ⊂ R d containing exactly k ≥ 1 points of lZ in its interior, is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 2021
ISSN: 0179-5376,1432-0444
DOI: 10.1007/s00454-020-00268-y